Теплопроводность газобетона 400 – Нужно ли утеплять газобетон толщиной 400 мм

Нужно ли утеплять газобетон толщиной 400 мм

Вопрос утепления газобетона, в первую очередь, должен быть экономически оправданным. То есть, вложенные деньги на утепление должны вернуться при последующей экономии на отоплении. Из этого следует, что выбор, в первую очередь, зависит от стоимости отопления за год, а она может сильно отличаться в разных климатических зонах и тарифах на энергоносители.

Также стоит учитывать плотность самого газобетона, которая может варьироваться от D300 до D600. Чем плотность выше, тем хуже удерживается тепло.

Если у вас дом из автоклавного газобетона D400 толщиной 375 или 400 мм, то его тепловое сопротивление, в идеале, составляет 3.4 м2·°C/Вт. В реальности же, около 3 м2·°C/Вт.

Если же дом из газобетона D300 толщиной 400 мм, то реальное тепловое сопротивление около 4 м2·°C/Вт. Для подавляющего большинства российских городов, такой газобетонный дом утеплять не потребуется.

Но если вы отапливаетесь электричеством, что является очень дорогим удовольствием, утепляться нужно совершенно точно. Экономически оправданной толщиной утепления является 100 мм.

Стоит напомнить, что тепло уходит не только через стены, но еще и через окна, двери, пол и особенно через потолок. Для комплексного утепления, все элементы дома должны быть хорошо утеплены.

Далее мы рассмотрим варианты газобетонных домов и разных регионов, в которых можно обойтись без утепления стен.

Нормы по сопротивлению теплопередаче

К примеру, есть газобетонный дом в Сочи, где очень тепло, отопительный сезон там короткий, а зимы нехолодные. По нормам, для данного региона, тепловое сопротивление стен должно составлять всего 1,79 м2·°C/Вт.

Для понимания, какой толщины должна быть газобетонная стена, чтобы проходить по нормам тепловой передачи, воспользуемся таблицей. В таблице нужно найти такие значения теплового сопротивления, которые будут выше 1,79 м2·°C/Вт, это конкретно для Сочи.

С Сочи разобрались, регион очень теплый, подходят почти все варианты, кроме двух, выделенных оранжевым цветом.

Теперь рассмотрим среднюю полосу России, в частности Москву и область. Требуемое сопротивление теплопередаче стен должно составлять 3.28 м2·°C/Вт.

Варианты газобетонных стен, не требующих утепления по московским нормам, выделены в таблице зеленым цветом.

Самыми холодными городами России являются: Якутск, Красноярск, Магадан, Иркутск, Новосибирск. Требуемое сопротивление теплопередаче в данных регионах составляет от 4 до 5,28 м2·°C/Вт.

Для Иркутска (4,05 м2·°C/Вт) подходят следующие, выделенные зеленым, варианты газобетонных стен, без утепления:

Стоит отметить, что в наших таблицах мы указали тепловое сопротивление именно отдельных газобетонных блоков, а не стены в целом. Тепловое сопротивление стены немного меньше, чем у отдельного газоблока. Это связано с тем, что в газобетонной кладке присутствуют клеевые швы между блоками, которые хоть и тонкие (2-3 мм), но всё равно являются мостиками холода.

Плюс ко всему, газобетон может быть влажным, что также несколько уменьшает тепловое сопротивление стены.  Резюмируя отметим, что более честным будет отнять 10% от наших табличных значений.

Теперь перейдем к главной таблице, в которой мы рассчитали тепловое сопротивление разных вариантов двухслойных стен (газобетон + утеплитель). Подбирайте вариант, который подходит для вашего региона.

Вывод. Нужно ли утеплять газобетон толщиной 400 мм? Если дом отапливается электричеством, то точно нужно. Также утепление рекомендуется, если газобетонные стены не дотягивают до норм по тепловой защите, которая зависит от климатической зоны.

Если вам все же придется утепляться, то лучше используйте плиты минеральной ваты толщиной 100 мм. Хоть минеральная вата и дороже пенопласта, зато она является паропроницаемой и выводит лишнюю влагу из дома и стен.

ПОХОЖИЕ СТАТЬИ:

stroy-gazobeton.ru

Теплопроводность газобетона, характеристики теплопроводности газоблока

Пористая структура газобетона

Газобетонные блоки обладают высокими показателями теплоизоляционных характеристик. Коэффициент теплопроводности газобетона — 0,12 Вт/м °С—0,145 Вт/м °С. Это связано с тем, что материал имеет высокую пористость.

Чем меньше процент пористости, тем ниже теплоизоляционные свойства. Поскольку газоблоки характеризуются более ячеистой текстурой, то данный материал превосходит по теплопроводности кирпич и пеноблоки. Чем больше пузырьков воздуха, тем больше свойства теплоизоляции материала.

Газобетон: характеристики теплопроводности

Ячеистый состав блоков предполагает, что производитель смог насытить бетонную смесь пузырьками воздуха. Например, для получения 1 куб.м. газобетона d500 необходимо 500 кг газобетонного материала.

Хотя воздух не обладает сильной прочностью, зато у него из всех веществ сама низкая теплопроводностью. Количество пузырьков воздуха, которые будут находиться в ячейках, и обусловливает теплоизоляционные свойства материала.

Помимо теплопроводности ключевой особенностью газобетонной смеси является крепкая и прочная оболочка пустот, которая получается в результате термической обработки.

Отличия теплопроводности газобетона 400 от теплопроводности газобетона 500

Структура газобетона d500 отличается от марки d400 тем, что у плотность смеси в марке d500 меньше. Следовательно, теплопроводность газобетона d500 будет более высокой. Что это означает на практике? То, что через газобетонные блоки d500 тепло будет покидать здание быстрее, чем через газобетон d400.

Однако, из-за меньшей плотности воздушных пузырьков, марка d500 прочнее d400.

Выбор марок газобетона для строительства

Газобетон марки d500 в сравнении с d400 более прочный, но менее теплый. Но эта разница настолько незначительна и незаметна, что не приведет к существенному различию в качестве построек из таких двух разных материалов. Какую бы марку вы не выбрали, все равно дом из газобетона будет обладать более низкой степенью теплопроводности, чем здание из кирпича.

Низкий показатель теплопроводности – экономия ваших денег

Причин, по которым для постройки дома стоит выбрать газобетон, множество. Одна из лавных – это экономия финансов не только при строительстве, но и для сохранности капиталовложений в будущем. Если посчитать энергозатраты при эксплуатировании газобетонного дома, то они значительно ниже, чем расходы на содержание кирпичной постройки. Значит, в денежном эквиваленте расходуемые энергоресурсы будут разительно меньшими в помещениях из газоблоков.

В интернет-магазине стройматериалов «Керамик Фест» вы можете купить газоблоки, которые точно соответствуют заявленным производителем техническим характеристикам.

Читайте также: Постройка дома из газобетона

keramikfest.com.ua

Сравнительная характеристика теплопроводности газобетона. Выбор толщины блока.

Технические характеристики газобетонных блоков

Отопительный сезон зачастую сопряжён с потерей тепла, которое крадут «холодные» стены не из газобетона UDK :-). А потому целесообразно строить или утеплять частный коттедж с использованием пористого материала. Газобетон различают по его плотности, которая измеряется в кг/м3. В зависимости от марки блока, его используют в различных целях: теплоизоляционных – в роли утеплителя, для постройки не высоких зданий, для строительства несущих конструкций высотных зданий.

Маркировка D400 обозначает, что в 1м3

пористого материала находится 400 кг. твёрдых частиц, занимающих 1/3 всей массы блока. Воздушные массы в ячейках являются естественной теплоизоляцией, не позволяющей внутреннему теплу из помещения проникать сквозь них. А потому, чем менее плотный монолит, тем лучше он сохранит тепло. В отличие от других стройматериалов, газобетонные блоки обладают более низкими показаниями теплопроводности. В этом можно убедиться взглянув на данную сравнительную таблицу и наглядные графики.

    Материал         Теплопроводность, Вт/м °C          
Показатели плотности, кг/м3
D400  D500
Газобетон при уровне влажности 0% 0,096   0,112
5%  0,117 
0,147
Пенобетон при уровне влажности 0% 0,102  0,131
5% 0,131  0,161
Древесина, при уровне влажности 0% 0,116  0,146
5% 0,181 0,187

Структура пеноблоков похожа на газобетон, но при этом в пеноблоках замкнутые ячейки и высокие показатели плотности. Геометрия пеноблоков не точна и не совершенна, а потому в роли теплоизоляционного материала намного выгоднее использовать именно газобетон.

Древесина, хоть и является экологически чистым материалом, но когда речь заходит о её качественных теплоизоляционных свойствах, то она значительно проигрывает газобетону, так как не способна в должной мере сохранить тепло.

Однако отметим, что ячеистый блок – дышащий, огнеупорный материал, который отлично справляется со всеми поставленными перед ним задачами. Используя его в строительстве, важно сделать ограждение фундамента и цоколя здания от влаги. Потому как пористая структура может её тянуть в себя. С этой целью применяется рубероид и битум.

Характеристики теплопроводности кирпича и газобетонных блоков

Кирпич – классический вариант стройматериала, используемый для строительства дачных домиков и частных коттеджей. Он морозоустойчив, долговечен и обладает высокой плотностью. Но в отличие от газобетонных блоков, кирпичная стена возводится многослойной. Для того, чтобы дополнительно проложить утепляющие материалы между наружными и внутренними кладками.

 Материал    Показатели средней теплопроводности, Вт/м ° C  
 Газоблок   0,08-0,14
 Керамические кирпичи   0,36-0,42
 Красные глиняные кирпичи   0,57
 Силикатные кирпичи  0,71

Выбор толщины блока

Толщина стен влияет на их теплоизоляционные свойства. Чем они толще, тем дольше будет сохранятся комфортная атмосфера внутри жилища.В процессе проектирования ширины ограждений, необходимо учитывать «мостики холода» (толщина цемента для укладки). Блоки монтируют при помощи пазового замка и клеевого раствора. Данный способ гарантирует сохранность тепла, сводя его потери до минимальных значений. Чтобы не платить больше, важно знать некоторые показатели, которыми обладают сборные конструкции стандартной толщины.

 Материал         Показатели толщины наружных стен, см         
12 см  20 см 24 см 30 см 40 см
Показатели теплопроводности, Вт/м ° C
Белые кирпичи 7,51  4,52  3,75 3,12  2,25
Красные кирпичи  6,75  4,05  3,37 2,71 2,02
Газобетонный блок D400 0,82  0,51 0,41  0,32 0,25

Наилучшими качественными характеристиками на сегодняшний день обладают газобетон ЮДК которые производятся в городе Днепр (Украина). Шесть лет назад (в 2012 г.) завод UDK создал газобетон D400 с показателем прочности – 35 кг/см2. Данные свойства стройматериала позволили значительно сократить глубину наружных стен, что в свою очередь повлияло на себестоимость стройки.

За счёт того, что геометрия блоков ЮДК чёткая и точная, их можно класть на ультратонкий слой клея UDK TBM, благодаря чему в итоге не образуется «мостиков холода». К тому же, за счёт низкого коэффициента теплопотери, наружным стенам не потребуется дополнительное утепление. А высокий уровень прочности газобетона позволяет возводить здания до 5 этажей. При этом не используя монолитный каркас. Срок службы газоблока ЮДК около 100 лет.

Выбор толщины стены из газобетонных блоков ЮДК

 Стена        Размер блока
Наружная стена:  D400, D500; В2,5-В2,0; 
25-35 кг/см2; 400-500 мм.
Несущая 
Не несущая 
Жилой дом до 4 этажей, где проживают круглый год 
Перегородка:  D400, D500; В2,5-В2,0; 
25-35 кг/см2; 200-500 мм.
Несущая при условии устройства монолитного пояса 
Перегородка:

D500; В2,5; 
35 кг/см2; 100-150 мм.

Не несущая

Выбор толщины стен необходимо делать с учётом вида постройки. Для постройки жилого дома у застройщиков пользуется популярностью толщина стены в один слой – 300-400 мм (иногда 500 мм). Ведь однослойные стены – всегда на порядок дешевле, нежели «сэндвичи». Классический стандартный газоблок имеет такие параметры: плотность – D300, D400; прочность В2,0,В2,5. Такой блок подходит для строительства одно- и двухэтажных зданий.


Для загородного дачного домика, куда хозяин наведывается лишь в тёплое время года, а зимой не требуется поддержание в помещении тепла, блока глубиной в 200 мм более чем достаточно. Такие стены прогреются очень быстро, а значит потребуется меньше энергоресурсов.

Для хозяйственных построек, а также гаража, толщину стен необходимо выбирать с учётом частоты нахождения в них. Там должно быть уютно и комфортно. Чтобы влажность и температурный режим были в норме для нужд хозяина помещения, в любое время года.

Определится с толщиной стены из газобетонных блоков, инвестор может исходя из нескольких нюансов. Во-первых, это стоимость газобетона. А она очень выгодная с учётом всех требований. Во-вторых, это типовой проект. Обычно в него закладывают средний показатель толщины стены с указанием  температурной зоны и требования к коэффициенту сопротивления теплопередачи, как указано на рисунке ниже.  

Для южной части Украины стена может быть более тонкой, нежели в северном регионе страны. Чем тоньше стена – тем большая жилая площадь выйдет в итоге. Естественно, толстые стены крадут жилые метры. Но, при злоупотреблении правилами грамотной стройки, можно существенно потерять на отоплении в зимний период и охлаждении в летний сезон. Ведь сквозь «холодные» стены тепло будет утекать с большой скоростью, а летом наоборот станет невыносимо жарко. К тому же, суммы за отопление и охлаждение помещения дополнительными средствами, увеличатся в разы.

Решение строить здание с толстыми стенами, это опять же не выгодно, ведь необходимо будет потратиться на дополнительный фундамент. Альтернативный и разумный выбор – стены из газобетона. Удовлетворяющие как потребителя, так и застройщика тем, что не дорого стоят и надёжно сохраняют тепло, при этом не мешая помещению «дышать».

На сегодняшний день газобетон ЮДК является оптимальным выбором стройматериала. Долговечный (70-100 лет), надёжный, обладающий низкой теплопроводностью и безупречной геометрией блоков – он находится на пике своей популярности. Благодаря его не высокому объёмному весу идёт меньшая нагрузка на фундамент. Лучше ложатся отделочные материалы и не требуется больших трудозатрат. А разнообразный выбор газобетонных блоков, отличающихся по толщине, прочности и назначению – способен удовлетворить требования большинства застройщиков.

gazobeton.dp.ua

Стены дома из газобетона

Теплотехнический расчет толщины стены из газобетона по нормируемому сопротивления теплопередаче по составляющей “А”: Сопротивление теплопередаче наружной стены из газобетонных блоков определенной толщины. Приведенное сопротивление теплопередаче (R0, м2×°С/Вт) наружных стен из газобетона следует принимать не менее нормируемых значений (Rreq, м2×°С/Вт), определяемых по нижеприведенной таблице в зависимости от градусо-суток (Dd) района строительства [пункт 5.3 СНиП 23-02-2003 Тепловая защита зданий].

Таблица. Нормируемые значения сопротивления теплопередаче ограждающих конструкций (наружных стен) жилых зданий*

Градусо-сутки отопительного  периода, Dd °C сут

Пример региона России

Нормируемые значения сопротивления теплопередаче,  Rreq м2°C/Вт, не менее чем:

Cтены

Перекрытия чердачные и над неотапливаемыми подпольями

Окна и балконные двери

2000

Астраханская обл., Ставропольский край

2,1

2,8

0,3

4000

Белгородская обл., Волгоградская обл.

2,8

3,7

0,45

6000

Алтай, Красноярский край, Москва, Санкт Петербург

3,5

4,6

0,6

8000

Магаданская обл.

4,2

5,5

0,7

10000

Чукотка

4,9

6,4

0,75

12000

н/д

5,6

7,3

0,8

Коэфф. а

 

0,00035

0,00045

 

Коэфф. b

 

1,4

1,9

 

* Таблица составлена по данным Таблицы 4 СНиП 23-02-2003 “Тепловая защита зданий”.

Значения нормируемого сопротивления теплопередаче (Rreq) для величин градусо-суток (Dd), отличающихся от приведенных в таблице выше ориентировочных значений можно определить по формуле:

Rreq = коэфф. a х Dd + коэфф b,
где Dd – градусо-сутки отопительного периода, (°С×сут), для конкретного населенного пункта.

Чтобы узнать нормативные значения градусо-суток отопительного периода обратимся к таблицам из  справочного пособия к СНиП 23-01-99 «Строительная климатология». Величина градусо-суток может значительно отличаться в зависимости от требований к средней внутренней поддерживаемой температуре внутренних помещений:

Таблица. Распределение регионов РФ по климатическим характеристикам (градусо-суткам отопительного периода, Dd )

Градусо-сутки отопительного  периода, Dd °C сут

Регионы России

2300–3500

Адыгея, Краснодарский край, Дагестан, Карачаево-Черкесия, Калмыкия, Кабардино-Балкария, Чечня, Ингушетия, Астраханская область, Ставропольский край, Ростовская область, Калининградская область.

3900–4500

Белгородская область, Брянская область, Волгоградская область, Воронежская область, Курская область, Липецкая область, Орловская область, Смоленская область, Тамбовская область, Приморский край

4500–4900

Владимирская область, Мордовия, Ивановская область, Калужская область, Ленинградская область, Москва, Московская область, Новгородская область, Пензенская область, Рязанская область, Саратовская область, Санкт-Петербург, Тверская область, Тульская область.

5000–5300

Башкортостан, Вологодская область, Карелия, Марий Эл, Камчатка, Костромская область, Нижегородская область, Оренбургская область, Пермская область, Сахалинская область, Татарстан, Ульяновская область, Челябинская область, Чувашия

5350–5900

Алтайский край, Архангельская область, Кировская область, Республика Коми, Коми-Пермяцкий АО, Корякский АО, Красноярский край, Удмуртия, Курганская область, Свердловская область, Хабаровский край

5970–6700

Республика Алтай, Амурская область, Бурятия, Еврейская АО, Иркутская область, Кемеровская область, Мурманская область, Новосибирская область, Омская область, Томская область, Хакасия, Ханты-Мансийский АО

6800–9960

Агинско-Бурятский АО, Магаданская область, Ненецкий АО, Таймыр, Тыва, Тюменская область, Чукотка, Усть-Ордынский АО, Эвенкийский АО, Якутия, Ямало-Ненецкий АО

Более точные значения градусо-суток отопительного периода для городов России приведены в таблице 4.1 Справочного пособия к СНиП 23-01-99* Москва, 2006

Таким образом, вы можете планировать различную среднюю температуру во внутренних помещениях и, исходя из нее, планировать величину тепловой защиты зданий. Следует помнить, что в жилых комнатах здания в холодное время года оптимальная температура составляет 20-22 °С (допустимая 18-24°С), в жилых комнатах домов в районах с наружными температурами наиболее холодной пятидневки ниже – 31°С оптимальная температура составляет 21-23 °С (допустимая 20-22°С). На кухнях и в санузлах: 19-21°С (допустимая 18-26°С). [Таблица 2.1 Справочного пособия к СНиП 23-01-99*]

Пример 1: Требуется определить нормируемое сопротивление теплопередаче стен (Rreq) дома для постоянного проживания в городе Тамбове, если достаточно экономный владелец дома планирует поддерживать среднюю температуру во внутренних жилых помещениях в холодное время года не выше + 20°С.
Определим нормируемое сопротивление теплопередаче  по формуле:
Rreq = коэфф. a х Dd + коэфф b.  Коэфф а = 0,00035, коэфф. b = 1,4, Dd для Т+ 20°С Тамбова = 4800 °С×сут

Подставляем значения в формулу: Rreq= 0,00035 x 4800 +  1,4 = 3,08 м2°C/Вт
Посмотрим как изменится значение нормируемое сопротивление теплопередаче  для стен из газобетона при задаче поддерживать в холодное время года температуру + 22°С (Dd для Т+ 22°С Тамбова = 5200 °С×сут):  Rreq= 0,00035 x 5200 +  1,4 = 3,22 м2°C/Вт.

Рассмотрим пример для Москвы для различных планируемых температур внутренних помещений в холодное время года:
Для температуры +14°C (гараж, мастерская): Rreq= 0,00035 x 3700 +  1,4 = 2,7 м2°C/Вт
Для температуры +20°C: Rreq= 0,00035 x 4900 +  1,4 = 3,1 м2°C/Вт
Для температуры +22°C: Rreq= 0,00035 x 5400 +  1,4 = 3,29 м2°C/Вт
Для температуры +24°C: Rreq= 0,00035 x 5800 +  1,4 = 3,43 м2°C/Вт

Для определения необходимой толщины газобетонной стены для выполнения требований  СНиП 23-02-2003 по нормируемому сопротивлению теплопередаче  для стен  необходимо располагать данными о коэффициенте теплопроводности блоков автоклавного газобетона различных марок по плотности.

Таблица. Коэффициент теплопроводности ячеистых бетонов при равновесной влажности*

Марка ячеистых бетонов по средней плотности

Коэффициент теплопроводности λ, Вт/(м∙°С), при равновесной весовой влажности W

4%

5%

D200

0,056

0,059

D250

0,070

0,073

D300

0,084

0,088

D350

0,099

0,103

D400

0,113

0,117

D450

0,127

0,132

D500

0,141

0,147

D600

0,160

0,183

D700

0,199

0,208

D800

0,223

0,232

D900

0,258

0,269

D1000

0,282

0,293

D1100

0,305

0,318

D1200

0,329

0,342

* По данным таблицы А1 ГОСТ 31359-2007 “Бетоны ячеистые автоклавного твердения”. Равновесная влажность устанавливается через 1-2 года после завершения постройки дома.

Зная коэффициент теплопроводности определенной марки газобетона можно установить требуемую толщину стены по формуле:
Толщина стены = R (нормируемое для данного региона строительства тепловое сопротивление строительной конструкции) х λ (коэффициент теплопроводности стенового материала).

Пример расчета минимальной толщины стены из газобетона для загородного дома из автоклавного газобетона марки по плотности D500 с теплопроводностью в реальных условиях равновесной влажности  0,12 Вт/м°С (данные производителя) в Москве с планируемой температурой во внутренних помещениях в холодное время года +22°С.

  1. Находим нормируемое сопротивление теплопередаче  для стен  дома в Москве для температуры +22°C: Rreq= 0,00035 x 5400 +  1,4 = 3,29 м2°C/Вт
  2. Определяем по таблице коэффициент теплопроводности λ для газобетона марки D500 при влажности 5% =  0,147 Вт/м∙°С.
  3. Определяем требуемую толщину стены из газобетона марки D500: Толщина стены = R x λ = 3,29 м2°C/Вт x 0,147 Вт/м∙°С = 0,48 м или 48 см

Получается, что для обеспечения нормируемого сопротивления теплопередаче  для стен  дома в Москве потребуется класть стену из автоклавного газобетона марки по плотности D500 толщиной 50 см.
Можно существенно (до 20% кубатуры стен из газобетона) сэкономить, если использовать вместо конструкционно-теплоизоляционного газобетона марки D500 близкий или равный по прочности на сжатие (B2,0 против B2,0 или B2,5), но менее плотный конструкционно-теплоизоляционный газобетон марки D400 с более низким коэффициентом теплопроводности. Рассмотрим следующий пример с газобетоном более низкой плотности:

  1. Находим нормируемое сопротивление теплопередаче  для стен  дома в Москве для температуры +22°C: Rreq= 0,00035 x 5400 +  1,4 = 3,29 м2°C/Вт
  2. Определяем по таблице коэффициент теплопроводности λ для газобетона марки D400 при влажности 5% =  0,147 Вт/м∙°С.
  3. Определяем требуемую толщину стены из газобетона марки D400: Толщина стены = R x λ = 3,29 м2°C/Вт x 0,117 Вт/м∙°С = 0,38 м или 38 см.

На этой веселой и радостной ноте завершается большинство рекомендаций по выбору толщины стены из автоклавного газобетона в пособиях и рекомендациях производителей и поставщиков газобетона.  Но о чем же они чаще всего умалчивают?  Производители в своих рекомендациях умалчивают о двух важных вещах:

  1. Стены вашего дома будут состоять не из монолитного куска автоклавного газобетона без швов, а из кладки блоков со швами. А коэффициент теплопроводности стены в целом будет выше, чем у отдельных блоков, так как в кладке будут присутствовать мостики холода из раствора или клея. Любые  теплотехнически неоднородные сквозные или несквозные включения  наружных ограждающих конструкций (стальные уголки, армпояса, надпроемные балки, железобетонные каркасы)  увеличат показатели теплопроводности стены.  
  2. Не обязательно достигать нормируемого сопротивления теплопередаче стены увеличением толщины самой газобетонной стены (Хотя зачастую продавцы газобетона вас будут убеждать  поступать именно так: им нужно продать вам как можно больше своей продукции). Однако мы можем использовать двухслойные или трехслойные стены с утеплителем из паропроницаемой базальтовой ваты, кубический метр которой стоит значительно дешевле кубического метра газобетона, а коэффициент теплопроводности базальтовой ваты значительно ниже, чем у газобетонной кладки. Пункт 8.11 СП 23-101-2004 “Проектирование тепловой защиты зданий”  рекомендует использовать утеплитель толщиной не менее 50 мм. Соотношение толщины наружного утеплителя и толщины стены должно быть не менее 1:1,25.

Поэтому мы переходим к рассмотрению вопроса, как на самом деле обстоят дела с теплопроводностью кладки из газобетона и как сэкономить на материалах, не проиграв в тепловой защите дома.

dom.dacha-dom.ru

Мифы и реальные характеристики газобетона

Данная статья поможет Вам прояснить физические свойства газобетонных блоков для строительства стен дома. Мы трудимся в строительной сфере и каждый раз при выборе материала, с которым ранее не работали, сталкиваемся с противоречивыми рекомендациями специалистов. На ум всегда приходит поговорка: каждый кулик своё болото хвалит. Так и есть. Для своих заказчиков мы применяем строительство из газобетона Итонг . Вам наверное снова вспомнилась та пословица?

Прошу не сравнивать нас со всеми и как всегда. Мы рекомендуем смотреть в суть материала, а именно в его физические свойства и показатели, которые можно замерить. И эти свойства никак не меняются от непрофессионального взгляда на газобетон.

В интернете и в речах куликов, которые продают кирпич и тёплую керамику, можно услышать неправильную информацию.

«В составе газобетона содержится алюминий и это вредно»

Алюминий – третий по распространенности на Земле химический элемент. Алюминий, вернее оксид алюминия – основа глинозема и различных глин, в т.ч. глины, применяемой в косметических целях. Металлический алюминий обладает высокой химической активностью и быстро окисляется на воздухе, превращаясь все в тот же оксид.

В состав газобетонной массы алюминий вводится двумя путями: с цементом, который содержит до 20% алюминия по массе (до 100 кг цемента на кубический метр газобетона), и в виде алюминиевой пудры (около 400 г пудры на кубический метр газобетона). Собственно эти 400 г и превращают текучую газомассу объемом около половины кубометра в полноценный кубометр газобетона: частички алюминиевой пудры, реагируя с гидроксогруппами раствора (ОН—-ионами), превращаются все в тот же оксид алюминия и водород. Выделяющийся водород и вспучивает газомассу.

Металлический алюминий в составе газобетона остаться не может просто из-за самой сути химического процесса газообразования: гидроксогруппы можно уподобить малькам, атакующим кусок мякиша – поверхность крупинки алюминия не пассивируется налипающими на нее «мальками», а раздергивается до полного истаивания.

В результате мы имеем материал, в кубометре которого содержится до 20 кг химически связанного алюминия. Для сравнения: в кубометре кирпича содержится 200-400 кг алюминия в виде оксидов, в кубометре неавтоклавных ячеистых бетонов – 50 кг алюминия и более. Окисленный алюминий – одно из наиболее стойких химических соединений. Подозревать его в некоей «вредности» бессмысленно.

«В составе газобетона есть известь, может ржаветь металлическая арматура»

Здесь в одной фразе заключены сразу два заблуждения: во-первых, то, что известь есть в составе газобетона, а во-вторых, то, что известь способствует коррозии.

Первое. Да, для производства газобетона используются и цемент, и известь, и кварцевый песок, и алюминиевая пудра. Но готовый газобетон из них не состоит! Готовый бетон состоит из новообразованных минералов, представленных в основном различными гидросиликатами. Автоклавный газобетон – это не продукт простой гидратации цемента, это синтезированный камень, который не содержит даже кварцевого песка. При автоклавной обработке даже кварцевый песок, инертное в обычных условиях вещество, расходуется в реакциях синтеза силикатов. Поэтому извести в составе газобетона нет. Есть силикаты кальция – весьма химически стойкие минералы.

Второе. «Под воздействием извести ржавеет арматура». То, что извести в готовом газобетоне нет, мы уже установили. Но даже если бы…

Бетон, приготовленный на цементе или извести дает щелочную реакцию. Щелочная среда препятствует коррозии металла. Стальные элементы, находясь в толще газобетона или в штробе в слое раствора, сохраняются дольше, чем на открытом воздухе. Газобетон препятствует коррозии, а не способствует ей.

«Кладка блоков на клею дороже, чем на цементном растворе»

Это не столько даже миф, сколько простое заблуждение, проистекающее от лености. Лености потратить пару минут на сравнительный расчет.

Давайте разберем «простоту и дешевизну» кладки на раствор.

Сначала по поводу простоты кладки на растворе по сравнению с клеем:

  • возможно, для “строителей”, чья юность прошла в студенческих стройотрядах, да и просто для поживших изрядно каменщиков – кладка на раствор привычней. И переучивание для работы с тонкослойным клеем потребует от них некоторых затрат сил и времени;
  • но от человека начинающего “с нуля”, равно как и для потратившего время на переобучение, кладка на клею требует меньших затрат времени и сил. Снижение трудозатрат при укладке блоков на клей (по сравнению с кладкой на растворе) существует объективно, что нашло отражение даже в снижении сметных расценок на такую кладку.

Теперь о дешевизне раствора в сравнении с клеем.

Кладка на тонкослойные “мастики” и “клея” еще в 80-е годы рассматривалась как способ снизить расход вяжущего при кладочных работах.

Расход ц/п раствора (толщина шва 10-12 мм) в 5-6 раз больше, чем расход клея.

При том, что клей для газобетона – это одна из самых дешевых сухих строительных смесей.

Клей стоит примерно в 2 раза дороже простой цементно-песчаной смеси при в 5-6 раз меньшем расходе.

Да, есть отдельные производители сухих смесей, которые умудряются продавать клей для ячеистых бетонов по сравнительно высоким ценам. Ну, так на то они и отдельные, чтобы своим исключением оттенять общее правило: клей для газобетона – дешевая замена раствору (при хорошей точности геометрических размеров блоков).

Использовать тонкослойный клей для кладки газобетонных блоков следует всегда. Для повышения экономической, теплотехнической и прочностной характеристик кладки.

«Для двух-трехэтажного дома недостаточно плотности 400, а нужен газобетон поплотнее, с плотностью не меньше 500-600 килограмм на кубометр. Плотности меньше 500 мало для несущих стен»

Говорить о плотности материала кладки имеет смысл в связи с ее теплотехническими характеристиками. И только.

Поскольку от плотности бетона блоков напрямую зависит их теплопроводность. От плотности значительно зависит также тепловая инерция стен. Но их несущая способность зависит только от прочности. А прочность и плотность не зависят друг от друга напрямую. Прочность бетона блоков (а через нее и несущая способность кладки) зависит от множества факторов: и от качества сырьевых материалов, и от тщательности их подготовки, и от режимов обработки уже отформованного бетона и, в качестве лишь одного из параметров, от плотности.

Поэтому, задумываясь о прочностных характеристиках стен будущего дома, надо вспоминать о прочности бетона, а не о его плотности. Приведем простой пример:

Допустим, для вашего строительства в проекте указана необходимая прочность кладочных материалов; и допустим, что для блоков назначен класс по прочности при сжатии В2,5 (такая прочность редко нужна для индивидуального малоэтажного строительства, как правило такой прочности достаточно для несущих стен 4-5 этажного многоквартирного дома).

Что вы обнаружите, начав поиски блоков с такой прочностью на рынке Ярославля? Вы обнаружите привезенные из центральных областей России блоки с характеристиками D500 B2,5 иD600 B2,5, в меньшем количестве будут присутствовать блоки D600 В2,5 белорусского и эстонского производств. Вероятно, что вы сможете найти блоки из ячеистого бетона неавтоклавного твердения с характеристиками D800 В2,5.

При этом основная продукция завода Ytong – это стеновые блоки с маркой по плотности D400 (400 кг/куб.м) и классом по прочности при сжатии В2,5 (средняя прочность камня 35 кгс/кв.см).

Теперь подведем итог: Несущая способность кладки зависит от прочности блоков. Прочность блоков и их плотность – совершенно разные характеристики. Выяснять их нужно по отдельности.

«Чем выше плотность бетона, тем выше его прочность»

Утверждение о том, что с ростом плотности растет прочность бетона, в общем случае справедливо.

В шестидесятые – семидесятые годы даже делались попытки создать универсальные формулы зависимости прочности автоклавных ячеистых бетонов от их плотности. Но со временем такие попытки были признаны не имеющими практической ценности и оставлены.

В целом, если случайным образом отобрать со строек России большое количество образцов ячеистых бетонов и построить график зависимости их прочности от плотности, то обобщенная кривая действительно покажет наличие зависимости между плотностью и прочностью. И форма этой кривой будет похожа на ту, что мы видим на иллюстрации.

Но если мы сузим площадь отбора образцов до определенной территории, то перед нами предстанет неожиданная картина: при фактической плотности бетона 380 – 415 кг/куб.м его прочность соответствует средней по России прочности для плотностей около 600 кг/куб.м, такая же прочность будет наблюдаться у образцов с остальными плотностями. Из этого правила будут лишь незначительные исключения, составляющие не более 1/5 от общего числа отобранных блоков. То есть образцы, отобранные со строек конкретного региона, не позволят исследователю установить зависимость между плотностью и прочностью.

Объяснение этому феномену довольно простое. Сейчас ряд компаний используют газобетонные блоки Итонг . с плотностью 400 кг/куб.м и фактическим классом по прочности бетона В 2.5. Блоки с плотностью около 500 кг/куб.м производит местный производитель газобетона, обеспечивая при этом примерно такую же прочность. Причем у некоторых изготовителей подобную прочность имеют также блоки плотностью 600кг/куб.м

Поэтому, выбирая в Ярославле газобетон для частного строительства, нет оснований полагать, что более плотный бетон является синонимом большей прочности.

«Газобетон, в отличие от пенобетона, боится воды»

(в качестве наглядной агитации за этот тезис приводится плавающий в воде пенобетонный кубик, а в качестве теоретического обоснования заявляется: «Пенобетон имеет закрытые поры, и как следствие сопротивляется проникновению воды и плавает на поверхности, а газобетон, имеющий открытую структуру пор, тонет»).

Начнем с того, что критерий «тонет/не тонет» не годится для определения пригодности материала для строительства. Кирпич тонет быстро, минвата тонет чуть медленнее, а вспененные пластики, как правило, не тонут вообще. Но эта информация никак не поможет нам определиться с выбором материала для строительства.

Тонет… ха!.. утопить газобетонный кубик не так-то просто. Время сохранения образца бетона «на плаву» не зависит напрямую ни от способа образования пор, ни от способа твердения, и, что важнее, практически никак не влияет на эксплуатационные характеристики материалов.

Влажность стенового материала, закрытого от атмосферных осадков, зависит от трех факторов: сезонность эксплуатации помещения, конструкция стены и сорбционная способность самого материала.

Для дачных домов, эксплуатирующихся зимой от случая к случаю, фактическая влажность материала стены вообще не имеет практического значения. Почти любой минеральный материал, закрытый от осадков исправной крышей, будет при такой эксплуатации практически вечным.

Для постоянно эксплуатирующихся домов важна правильная конструкция стены – такое устройство стенового «пирога», при котором паропроницаемость материалов стены возрастает по мере продвижения от внутренних слоев к наружным (это требование особенно касается наружной отделки, которая не должна движению паров из помещения в сторону улицы.

И третье – сорбционная влажность материала (которая никоим образом не связана с водопоглощением и не проверяется методом «тонет/не тонет»). Сорбционная влажность различных ячеистых бетонов обычно мало различается от образца к образцу и составляет около 5% по массе при относительной влажности воздуха 60% и 6-8% по массе при относительной влажности воздуха 90-95%. Это означает, что чем ячеистый бетон менее плотный, тем меньше воды он содержит. Так, стена толщиной 250 мм из газобетона плотностью 400 кг/м3 будет содержать в среднем 5 кг воды в одном кв.м, такая же стена из пенобетона плотностью 600 кг/м3 будет содержать воды уже 7,5 кг/кв.м, как и стена из щелевого кирпича (плотность 1400 кг/куб.м, влажность 2%).

«Газобетон гигроскопичен и накапливает влагу, он не подходит для стен влажных помещений»

Гигроскопичность (способность абсорбировать пары воды из воздуха) – это и есть та самая сорбционная влажность, о которой несколько слов было сказано в предыдущей рубрике.

Да, про газобетон можно сказать, что он гигроскопичен. За несколько месяцев стояния в тумане ячеистобетонная конструкция может набрать воды около 10% от своего веса. Примерно такой и оказывается к весне влажность стен не отапливаемых зданий, зимовавших в условиях влажной зимы. Потом, к маю-июню, влажность стен постепенно снижается. Сезонные колебания влажности конструкции, вызванные сорбцией/десорбцией, невелики и не приводят к каким-либо значимым изменениям в материале кладки.

Перегородки, отделяющие душевые и ванные комнаты от других помещений здания, подвергаются периодическому одностороннему воздействию влажного воздуха. Это воздействие также не может привести к сколь-нибудь значимому накоплению влаги в стене.

Поэтому внутриквартирные перегородки санузлов и ограждения душевых в спорткомплексах и бассейнах из автоклавного газобетона применяются массово.

Совсем другое дело – наружные ограждения помещений с влажным и мокрым режимами эксплуатации. Применять газобетон в них нужно с большой осторожностью (равно как и любые другие неполнотелые материалы, включая пустотный кирпич и щелевые бетонные блоки). Увлажнение материалов наружных стен отапливаемых помещений лишь частично зависит от их сорбционной влажности (гигроскопичности). Гораздо большее влияние на влажность наружных стен оказывает их конструктивное решение: способ наружной и внутренней отделки, наличие дополнительных включений в состав стены, способ устройства оконных откосов и опирания перекрытий. В общем случае, можно сказать так: для устройства из газобетона наружных стен влажных помещений (парной, например) нужно предусматривать тщательную пароизоляцию их внутренних поверхностей.

Повторяем:

  • гигроскопичность не имеет значения для стен неотапливаемых помещений;
  • гигроскопичность не имеет значения для перегородок внутри зданий;
  • гигроскопичность не имеет практического значения для наружных стен отапливаемых зданий.

«Газобетонные стены без дополнительного утепления недостаточно теплые»

Наружные стены здания в первую очередь должны обеспечивать санитарно-гигиенический комфорт в помещении. Действующими нормами принято, что такой комфорт будет обеспечен, если в самый лютый мороз перепад температур между внутренней поверхностью наружной стены и внутренним воздухом будет не более 4 градусов.

Для большинства районов Центрального регионов это требование обеспечивается при сопротивлении стены теплопередаче равном 1,3 – 1,5 м2.оС/Вт. А таким сопротивлением теплопередаче обладает кладка из газобетонных блоков толщиной 150 – 200 мм (в зависимости от плотности 400 или 500 кг/куб.м). До недавних пор все панельные «корабли» в Ярославле строились с наружными стенами толщиной 240 мм из газобетона марки по средней плотности D600 (примерно 600 кг/куб.м). Сейчас такие же дома по обновленным проектам строятся со стенами толщиной 320 мм (без каких бы то ни было дополнительных утеплителей). При этом такие дома соответствуют действующим строительным нормам и обеспечивают комфортность проживания.

«Теплая» стена – это, прежде всего, стена, обеспечивающая тепловой комфорт. Тепловой комфорт в помещении обеспечивается газобетонной стеной толщиной уже 150 – 200 мм! Именно такой стены достаточно для дачного дома, который в холодный сезон эксплуатируется эпизодически, от случая к случаю. Для двухэтажного дачного дома достаточно кладки из блоков толщиной 200 мм (реже — 250 мм) -как по несущей способности, так и по теплотехническим характеристикам. Дополнительного утепления такой дом не требует.

«Стена без наружного утепления не отвечает требованиям тепловой защиты»

Сначала несколько слов собственно о требованиях, предъявляемых строительными нормами к наружным стенам жилых зданий, эксплуатируемых постоянно.

Первое требование – обеспечить санитарно-гигиенический комфорт в помещении. Об этом речь шла в предыдущем разделе. Для обеспечения такого комфорта в большинстве районов Центрального и Северо-западного регионов России наружные стены должны обладать сопротивлением теплопередаче равным 1,3 –1,5 м2.оС/Вт. Таким сопротивлением при плотности бетона блоков 400 кг/м3 обладает газобетонная кладка толщиной 150 мм.

Второе требование, предъявляемое нормами к наружным ограждающим конструкциям – содействовать общему снижению расхода энергии на отопление здания.

Для упрощения расчетов, проводимых при проектировании тепловой защиты, введено понятие «нормируемого значения сопротивления теплопередаче» Rreq, которое принимается по простой табличке в зависимости от продолжительности и интенсивности отопительного периода (так называемые «градусо-сутки отопительного периода» в районе строительства). Для Московской области эта табличка предписывает сопротивление теплопередаче стен жилых зданий равное 2.8-3.1 м2.оС/Вт.

Эта величина означает, что при постоянном перепаде температур между внутренним и наружным воздухом в 1 оС через стену будет проходить тепловой поток плотностью 1/3,08 = 0,325 Вт/м2. А при средней за отопительный период разнице температур 22 оС плотность теплового потока составит 7,15 Вт/м2. За все 220 суток отопительного периода через каждый квадратный метр стены будет потеряно около 37,5 кВт.ч тепловой энергии. Для сравнения: через каждый квадратный метр окна теряется почти в 6 раз больше энергии – около 225 кВт.ч.

Следующая стадия проектирования тепловой защиты зданий – расчет потребности в тепловой энергии на отопление здания. Как правило, на этой стадии оказывается, что расчетные значения значительно ниже требуемых (т.е. расчетный расход энергии меньше нормативного). В этом случае (при коммерческом строительстве) понижают уровень теплозащиты отдельных ограждений здания или (в случае, когда заказчику предстоит самому эксплуатировать здание) выбирают экономически оптимальное решение: сэкономить на единовременных вложениях или понадеяться на экономию в процессе эксплуатации. Минимальное значение сопротивления теплопередаче наружных стен жилых зданий, до которого можно снижать тепловую защиту – 1,76 м2.оС/Вт.

Таким образом, при новом строительстве в климатических условиях Центральной России нормативные документы требуют обеспечить для наружных стен жилых зданий сопротивление теплопередаче на уровне 1,97 – 3,13 м2.оС/Вт (СП 50.13330.2012 «Тепловая защита зданий», Актуализированная редакция СНиП 23-03-2003).

Теперь о том, какими теплозащитными характеристиками обладает кладка, выполненная из газобетонных блоков.

  • При расчете стены по условиям энергосбережения берем в качестве расчетной среднюю теплопроводность газобетона при эксплуатационнй влажности. Для жилых зданий Ярославля и газобетона марки по средней плотности D400 получаем такие значения: расчетная влажность 5%, расчетная теплопроводность 0,117 Вт/м.оС (ГОСТ 31359-2007 «Бетоны ячеистые автоклавного твердения»).
  • Коэффициент теплотехнической однородности кладки по полю стены (без учета откосов и зон сопряжения с перекрытиями) примем равным 1. Разные расчетные модели показывают, что при кладке на тонком клеевом шве 2±1 мм коэффициент теплотехнической однородности может снижаться до 0,95-0,97, но лабораторные эксперименты и натурные обследования такого снижения не фиксируют. В любом случае – в инженерных расчетах погрешностью в пределах 5% принято пренебрегать.
  • Теплоизоляция зон сопряжения с перекрытиями и оконных откосов – это отдельные конструктивные мероприятия, с помощью которых можно добиться повышения теплотехнической однородности до величин даже бόльших единицы. Теперь по формуле R = 1/αн + δ/λ + 1/αв найдем сопротивление теплопередаче газобетонных кладок разных толщин (при плотности газобетона 400 кг/куб.м).
  • Как видно из таблицы, уже при толщине 200 мм стена из газобетона D400 может удовлетворять требованиям, предъявляемым к стенам жилых зданий из условия снижения расхода энергии на отопление.

    А при толщинах 300 мм и более может использоваться даже без проверки удельного расхода энергии на отопление. Итак, однослойная газобетонная стена толщиной более 300 мм совершенно самодостаточна с точки зрения нормативных требований к наружным ограждениям жилых зданий.

    «Без наружного утепления точка росы оказывается в стене»

    «Точка росы», а если говорить более четко, то «плоскость возможной конденсации водяных паров», легко может оказаться внутри утепленной снаружи ограждающей конструкции и практически никогда не окажется в толще однослойной стены.

    Наоборот, однослойная каменная стена менее подвержена увлажнению, чем стены со слоем наружного утеплителя в пределах 50 – 100 мм.

    Дело в том, что плоскость возможной конденсации – это не тот слой стены, температура которого соответствует точке росы воздуха, находящегося в помещении. Плоскость конденсации – это слой, в котором фактическое парциальное давление водяного пара становится равным парциальному давлению насыщенного пара. При этом следует учитывать сопротивление паропроницанию слоев стены, предшествующих плоскости возможной конденсации. Учитывать сопротивление паропроницанию внутренней штукатурки, обоев и т.д.

    Ещё раз рекомендуем индивидуальным застройщикам не пользоваться в быту косвенными характеристиками, а выяснять фактические значения наиболее важных параметров блоков.

    Для стенового материала важнейшими характеристиками являются прочность на сжатие, морозостойкость, паропроницаемость и показатель теплопроводности. Именно по этим характеристикам мы и выбрали производителя блоков Итонг. Если сравнивать по цене-качеству, как обычно говорят, надо понять что для Вас важнее всё-таки цена или качество. Если углубится в изучение технологий строительства и производства материалов, напрашивается вывод, что чем дешевле тем менее качественный материал. Желаем Вам осознанного выбора.

    Источник: www.skusk.ru
    Источник

    Тематические статьи

    highlogistic.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *